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Abstract
Water in its three ambient phases plays the central thermodynamic role in the terrestrial 
climate system. Clouds control Earth’s radiation balance, atmospheric water vapour is the 
strongest ‘greenhouse’ gas, and non-equilibrium relative humidity at the air–sea interface 
drives evaporation and latent heat export from the ocean. On climatic time scales, melting 
ice caps and regional deviations of the hydrological cycle result in changes of seawater 
salinity, which in turn may modify the global circulation of the oceans and their ability to 
store heat and to buffer anthropogenically produced carbon dioxide. In this paper, together 
with three companion articles, we examine the climatologically relevant quantities ocean 
salinity, seawater pH and atmospheric relative humidity, noting fundamental deficiencies in the 
definitions of those key observables, and their lack of secure foundation on the International 
System of Units, the SI. The metrological histories of those three quantities are reviewed, 
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problems with their current definitions and measurement practices are analysed, and options 
for future improvements are discussed in conjunction with the recent seawater standard 
TEOS-10. It is concluded that the International Bureau of Weights and Measures, BIPM, 
in cooperation with the International Association for the Properties of Water and Steam, 
IAPWS, along with other international organizations and institutions, can make significant 
contributions by developing and recommending state-of-the-art solutions for these long 
standing metrological problems in climatology.

Keywords: seawater salinity, seawater pH, relative humidity, traceability

S  Online supplementary data available from stacks.iop.org/MET/53/R1/mmedia

So wäre es zu wünschen, daß man zukünftig bei der 
Bestimmung … immer von denselben Voraussetzungen 
ausgeht, oder jedenfalls daß die Grundlage des ange-
wandten Verfahrens scharf pointiert wird.

[It is desirable that future estimates … be always based 
on the same assumptions, or at least that the method ap-
plied be precisely described.]

S.P.L. Sörensen, S. Palitzsch, 1910

1. Introduction

Climate research is a special scientific task that inherently 
requires close world-wide cooperation over many human 
generations. Observational data, be they measured directly 
or derived from equations  that transform the original input 
values, need to be rigorously defined, consistent and compa-
rable between groups that work at distant locations or times. 
The impossibility of repeating real-time climatological mea-
surements largely prevents correcting erratic or suspicious 
readings made in the past. Data measured today will likely 
be exploited in the future and should be unambiguous and 
reliable to the highest standards currently available. The pre-
ferred and most advanced metrological basis to be employed 
is the International System of Units, the SI (BIPM 2006). The 
requisite traceability to the SI of environmental measurement 
results was only gradually established in recent years, and in 
several fields this traceability still poses a serious challenge 
(BIPM 2010), as will also be emphasized in this paper and 
its companions (Pawlowicz et al 2015, Dickson et al 2016, 
Lovell-Smith et al 2015). Solving these metrological problems 
in geosciences demands joint efforts of international organiza-
tions and institutions that develop and implement definitions, 
equations and measurement standards based on the SI.

Water in its three ambient phases is the unrivalled key 
substance in the complex dynamic terrestrial climate system. 
Water vapour in the atmosphere accounts for 50 % to 60 %  
of the terrestrial greenhouse effect, in contrast to 20 % to 
25  % due to carbon dioxide, CO2 (Trenberth et al 2007, 
Schmidt et al 2010). Water in the atmosphere not only con-
trols the Earth’s radiation balance but also the oceanic export 
of latent heat and entropy as well as the formation and dis-
tribution of clouds (Baumgartner and Reichel 1975, Clement 
et al 2009, Dessler 2010, Feistel and Ebeling 2011, Wells 

2012,  Tollefsen 2012, Fasullo and Trenberth 2012, Hellmuth 
et al 2013); the latter may contribute another 10 % to 25 % to 
greenhouse warming (Lacis et al 2010, Schmidt et al 2010). 
Melting polar glaciers raise the sea level and influence the 
surface salinity distribution, and in turn may affect the large-
scale vertical and horizontal circulations in the oceans which 
continuously store, release or displace huge amounts of heat 
and dissolved gases (Peixoto and Oort 1992, Barker et al 
2011, Rayner et al 2011, Reid and Valdés 2011, Marotzke 
2012, Stocker 2013, Otto-Bliesner et al 2014, Schmidtko et 
al 2014, Böhm et al 2015). Trends in global distributions of 
humidity, latent heat flux, evaporation and precipitation are 
closely connected with small but precisely measurable sys-
tematic shifts and anomalies in sea-surface salinities (Boyer 
et al 2005, Stott et al 2008, Durack and Wijffels 2010, Durack 
et al 2012, 2013, Pierce et al 2012). Seawater is the largest 
buffer for anthropogenically produced CO2, a fact that high-
lights the risk of ocean acidification and potential damage 
to the marine ecosystem (Caldeira and Wickett 2003, Raven  
et al 2005, Marion et al 2009, Kerr 2010, Le Quéré 2010, 
Le Quéré et al 2015). Seawater pH is an important param-
eter associated with the distribution of inorganic carbon in 
the ocean.

It is evident from climatology and geosciences that atmos-
pheric relative humidity, ocean salinity and seawater pH are 
key parameters for observing, modelling and analysing the 
increasing effects of global warming on ecosystems and 
society. However, despite their widespread use and relevance, 
the metrological underpinning of these parameters is inade-
quate, relies on century-old provisional concepts, lacks trace-
ability to the SI, or suffers from ambiguities and deficiencies 
of definitions, conventions and measurement techniques. The 
recent introduction of the international standard TEOS-10, the 
Thermodynamic Equation of Seawater 2010 (IOC et al 2010), 
has raised new awareness of these long standing and increas-
ingly urgent problems, and has at the same time offered new 
perspectives for overcoming them.

The definition of relative humidity stands out from that 
of salinity and pH in that a widely accepted and authorized 
definition, clearly traceable to the SI, and acting as a de facto 
standard, has been established and promulgated by the WMO18 
since 1950. Nevertheless, the definition does not cover the full 
range of conditions possible under both industrial and extreme 

18 WMO: World Meteorological Organization, www.wmo.int 
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natural conditions, and a number of non-standard definitions 
continue to propagate. The challenge is to provide a definition 
of relative humidity with a sound thermodynamic basis con-
sistent with the WMO definition yet covering the full range.

TEOS-10 was adopted by the IOC19 in 2009 (UNESCO 
2009) for oceanography with respect to thermodynamic prop-
erties of seawater and ice, and by the IUGG20 in 2011 (IUGG 
2011) for marine sciences by a resolution that also recom-
mends the use of the TEOS-10 equation for humid air. While 
TEOS-10 supersedes the previous oceanographic Equation of 
State of 1980 (EOS-80, see Unesco 1981), its relation to 
atmospheric standard equations  recommended by JCOMM21 
and WMO (2008) is left unsettled (JCOMM 2014). The for-
mulation and successful international adoption of TEOS-10 
was the result of close cooperation between the SCOR22/
IAPSO23 Working Group 127 and IAPWS24 in the years 2006 
to 2011, until WG 127 was disbanded in accordance with the 
rules governing SCOR/IAPSO Working Groups (Pawlowicz et 
al 2012). In order to address metrological problems beyond 
TEOS-10, the standing Joint Committee on the Properties of 
Seawater, JCS, was established by SCOR, IAPSO and IAPWS 
in 2012. In this context, the plan for this position paper arose 
during meetings held at the BIPM25 at Sèvres in August 
2011 and February 2012, and became definite during a joint 
meeting of JCS with representatives of CIPM26–CCT27 and 
CIPM–CCQM28 at the 16th International Conference on the 
Properties of Water and Steam in Greenwich, London, UK, 
in September 2013 (Feistel 2013, IAPWS 2013, Hellmuth  
et al 2014, Pawlowicz et al 2014). Under the umbrella of JCS, 
cooperation commenced between the IAPWS, the international 
standards developing organization for properties of water and 
aqueous systems, and the BIPM, the organization that ensures 
and promotes the global comparability of measurements and 
provides the coherent International System of units (SI), as 
defined by the CIPM and described by BIPM (2006). The 
BIPM-IAPWS cooperation was confirmed at the 2012 and 
2014 meetings of CCQM and CCT (BIPM 2012, 2014).

The recent standard for the thermodynamic properties 
of seawater, TEOS-10, is introduced in the next section. 
Sections 3–5, respectively, briefly introduce the metrological 
challenges of ocean salinity, seawater pH and atmospheric 
relative humidity which are then analysed in greater depth 

in the subsequent parts 2 (Pawlowicz et al 2015), 3 (Dickson  
et al 2016) and 4 (Lovell-Smith et al 2015), respectively, of 
this series of articles. Those companion papers review the 
scientific histories of definition and measurement of sea-
water salinity, seawater pH and atmospheric relative humidity, 
explain the key roles of those quantities in the climate system, 
consider the problems of their current definitions and meas-
urement techniques, and provide options for future improve-
ments. In appendices A, B and C in the digital supplement 
(stacks.iop.org/MET/53/R1/mmedia) of this paper, for easy 
reference, some relevant thermodynamic definitions and prop-
erties of chemical potentials, activities and fugacities are sum-
marized from a metrological perspective. Based on TEOS-10, 
appendix D in the supplement (stacks.iop.org/MET/53/R1/
mmedia) provides an example for an axiomatic approach to 
define humidity quantities in a mutually consistent manner.

The authors of the present series of articles are specialists in 
the different fields of research and technology involved; they 
are active in several National Metrological Institutes (NMIs) as 
well as in national and international organizations and institu-
tions such as ASHRAE29, BIPM, IAPSO, IAPWS, IUPAC30, 
JCOMM, OSIL31, SCOR or WMO. Despite this, it is understood 
that the perspectives and opinions expressed in these papers do 
not necessarily reflect official policies of those organizations.

2. Thermodynamic Equation of Seawater—2010 
(TEOS-10)

The need for accurate, consistent and comprehensive descrip-
tions of the thermodynamic properties of seawater and its 
equilibria in contact with ice and humid air led to the devel-
opment of the new oceanographic standard TEOS-10, the 
Thermodynamic Equation of Seawater 2010 (IOC et al 2010). 
At the core of TEOS-10 are four empirical thermodynamic 
potentials, officially adopted as IAPWS formulations,

 (i) the specific Helmholtz energy of pure fluid water, 
( )f T ,F ρ , as a function of ITS-90 temperature, T, and 

mass density, ρ, commonly known as the IAPWS-95 
formulation (Wagner and Pruß 2002, IAPWS 2014),

 (ii) the specific Gibbs energy of hexagonal ice I, ( )g T p,Ih , 
as a function of temperature and pressure, p (Feistel and 
Wagner 2006, IAPWS 2009b),

 (iii) the specific Gibbs energy of IAPSO Standard Seawater, 
( )g S T p, ,SW

A , as a function of Absolute Salinity, SA, tem-
perature and pressure (Feistel 2008, IAPWS 2008), and

 (iv) the specific Helmholtz energy of humid air, ( )f A T, ,AV ρ , 
as a function of dry-air mass fraction, A, temperature and 
mass density (Feistel et al 2010a, IAPWS 2010).

By design, the identity ρ ρ( ) ≡ ( )f T f T0, , ,AV F  holds for 
humid air in the limiting case of air–free water vapour, and 
similarly ρ ρ( ) ≡ ( )+g T p f T p0, , , /SW F  is obeyed in the zero-
salinity limit of pure liquid water. The four thermodynamic 

19 IOC: Intergovernmental Oceanographic Commission of UNESCO, http://
ioc-unesco.org 
20 IUGG: International Union of Geodesy and Geophysics, www.iugg.org 
21 JCOMM: Joint Technical Commission for Oceanography and Marine 
Meteorology, www.jcomm.info/ 
22 SCOR: Scientific Committee on Oceanic Research, http://www.scor-int.org 
23 IAPSO: International Association for the Physical Sciences of the Oceans, 
http://iapso.iugg.org/ 
24 IAPWS: International Association for the Properties of Water and Steam, 
www.iapws.org 
25 BIPM: International Bureau for Weights and Measures, www.bipm.org/
en/about-us/ 
26 CIPM: Comité International des Poids et Mesures, www.bipm.org/en/
committees/cipm/ 
27 CCT: Consultative Committee on Thermometry, www.bipm.org/en/com-
mittees/cc/cct/ 
28 CCQM: Consultative Committee for Amount of Substance, www.bipm.
org/en/committees/cc/ccqm/ 

29 ASHRAE: American Society of Heating, Refrigerating and Air-Condition-
ing Engineers, www.ashrae.org/ 
30 IUPAC: International Union of Pure and Applied Chemistry, www.iupac.org 
31 OSIL: Ocean Scientific International Ltd., http://www.osil.co.uk 
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potentials of TEOS-10 therefore satisfy axiomatic condi-
tions of completeness, consistency and independence. Here, 
completeness means that all thermodynamic properties of 
the pure phases, their phase equilibria and composites can 
be computed from algebraic combinations of partial deriva-
tives of the potentials (Feistel et al 2008, 2010b, IOC et al 
2010). Consistency means the impossibility of deriving from 
the potentials two different results for the same quantity. 
Finally, independence excludes the possibility of deriving 
the same quantity alternatively from different parts of the 
four potentials. This rigorous axiomatic approach distin-
guishes TEOS-10 from earlier collections of empirical 
correlations for thermodynamic properties of aqueous geo-
physical systems, such as those recommended by JPOTS32 
in the context of the 1980 Equation  of State of Seawater, 
EOS-80 (Unesco 1981, 1983, Millero 2010, Pawlowicz  
et al 2012), or those recommended by WMO (2008) for the 
atmosphere.

A rigorous axiomatic approach has many advantages. 
Special thermodynamic quantities such as fugacity coefficients 
or enhancement factors of humid air (WMO 2008, Feistel 
2012) are sometimes introduced in textbooks on a merely 
empirical basis in terms of selected correlation equations. 
In contrast, as a consequence of consistency, independence 
and completeness, not only can such quantities be computed 
from TEOS-10 (or its improved successors) in a way that is 
consistent with virtually any other measured thermodynamic 
property of the related substances, such quantities can also 
be defined unambiguously in terms of the corresponding 
thermodynamic potentials and their independent variables, 
see appendix D in the digital supplement (stacks.iop.org/
MET/53/R1/mmedia). Such a uniform method of formally 
defining and representing all thermodynamic properties with 
respect to a minimum common set of basic functions may 
avoid confusion, may more easily permit identification and 
quantification of differences between seemingly equivalent 
quantities such as various alternative available definitions of 
relative humidity, and may establish solid thermodynamic 
links between quantities that were originally introduced sep-
arately and independently, such as correlations for the heat 
capacity and for the sublimation pressure of ice.

TEOS-10 is also highly accurate. For example, within their 
common ranges of validity, TEOS-10 is consistent within 
mutual uncertainties with the CIPM-2001 equation  for the 
density of liquid water (Tanaka et al 2001, Harvey et al 2009, 
IAPWS 2009c) and with the CIPM-2007 equation for the den-
sity of humid air (Picard et al 2008), which are recommended 
for metrology by the International Committee for Weights and 
Measures (CIPM).

However, the advantages of TEOS-10 over other collec-
tions of equations are not without some computational cost. 
For convenience of use, easier numerical implementation and 
increased computation speed, IAPWS has released tailored 
‘supplementary’ correlation equations  for selected proper-
ties that are consistent (within small tolerances) with the four 

‘primary’ potential functions of TEOS-10 but are not inde-
pendent of the latter. Those fits to data points computed from 
the original equations may possess smaller ranges of validity, 
or larger uncertainties, or may be expressed in terms of more 
convenient independent variables. Available, for example, 
are a Gibbs function of liquid water for oceanographic use 
(Feistel 2003, IAPWS 2009a), a description of water proper-
ties at pressures in the vicinity of 0.1 MPa (Pátek et al 2009, 
IAPWS 2011a), and simple equations  for the melting and 
sublimation curves of pure ice in the p–T diagram (Wagner  
et al 2011, IAPWS 2011b). The Gibbs-Seawater (GSW) 
library is a collection of tailored equations  for high-speed 
oceanographic applications, derived from the four basic for-
mulations of TEOS-10 (McDougall and Barker 2011).

Possible future applications of TEOS-10 and IAPWS 
equations  to the atmosphere may be supported additionally 
by low-temperature extensions for water vapour below 130 K 
(IAPWS 2012) and for supercooled liquid water (Holten  
et al 2014). While IAPWS-95 describes air–free liquid 
water, equations for Henry’s constants and partial molar vol-
umes are available for the calculation of properties of dilute 
aqueous solutions of gases (Fernández-Prini et al 2003, 
IAPWS 2004, Harvey et al 2005) whose effects exceed the 
measurement uncertainty in particular for colligative proper-
ties. For example, due to the dissolution of air, the very accu-
rate TEOS-10 pure-water freezing point of 273.152 519 K at 
101 325 Pa (with an uncertainty of only 2 μK because the triple 
point is at exactly 273.16 K by definition, Feistel and Wagner 
2006) is lowered to the common ice point of 273.150 019 K 
(with an estimated uncertainty of 5 μK, Harvey et al 2013). In 
contrast, effects of dissolved air on the humid-air  saturation 
pressure, even though of similar magnitude (relative satura-
tion-pressure change of about 2   ×   10−5 at standard ocean 
 surface conditions, McDonald 1963), are irrelevant in practice 
(Harvey et al 2005).

3. Seawater salinity

Salinity, or more precisely, Absolute Salinity (Wright et al 
2011), is a term used to quantify the total mass of substances 
dissolved in pure water to form a given mass of seawater. 
Seawater salinity changes as a result of mixing processes in 
the water column and, more dramatically, by precipitation and 
evaporation at the surface, by freezing and melting of sea ice, 
and by freshwater discharge from rivers and glaciers. In the 
form of latent heat, the oceans export 50 % to 90 % of the 
absorbed solar energy to the atmosphere by evaporating water 
(Josey et al 1999, 2013, Emery et al 2006, Pierrehumbert 
2010, Feistel and Ebeling 2011, Wells 2012). The related 
global hydrological cycle is reflected in the distribution of sea-
surface salinities; arid regions in the trade-wind belts show 
higher, and humid regions at the equator and at mid-latitudes 
lower salinities than the global average. While observations 
of latent heat fluxes are technically demanding and subject 
to large uncertainties on the order of 20 %, or 30 W m−2  
(Katsaros 2001, Josey et al 2013), local long-term trends 
in salinity are precisely measureable indicators for climatic 

32 JPOTS: Unesco/SCOR/ICES/IAPSO Joint Panel on Oceanographic 
Tables and Standards (until 1990, Pawlowicz et al 2012). 
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changes in the terrestrial water cycle (Durack and Wijffels 
2010, Durack et al 2012, 2013, Pierce et al 2012). Salinity 
deviations, in turn, affect the density gradients in the ocean 
and in this way modify the world-wide marine ‘conveyor belt’ 
of heat transports. Along with temperature and pressure as 
key parameters for ocean modelling and observation, salinity 
significantly influences almost every property of seawater, 
including its heat capacity, sound speed, refractive index and 
viscosity (IOC et al 2010).

However, the demonstrated usefulness of salinity in ocean-
ography is in striking contrast to the practical inability to 
directly measure it (Lewis 1980, Millero et al 2008). During 
the last century, only two methods of measuring this total dis-
solved mass were successfully exploited to establish salinity 
scales that were officially adopted by oceanography, namely 
by drying a sample and weighing the residue (Forch et al 
1902), or by carrying out a complete chemical analysis of the 
sample’s composition and adding up the constituent masses 
(Millero et al 2008). Neither method is appropriate for the 
frequent regular measurements required in oceanographic 
studies, nor are they mutually consistent with one another 
within requisite accuracy. In practice, oceanographers, for 
many years, have used the fast, reliable and robust technique 
described by the Practical Salinity Scale of 1978 (PSS-78; 
see Unesco 1981) to approximate these other methods. This 
Practical Salinity is defined by using proxy measurements of 
electrical conductivity relative to that of a bottled standard, 
natural seawater, reference material called IAPSO Standard 
Seawater (SSW), commercially provided by OSIL33. Use 
of this proxy measurement is possible because the chemical 
composition of seawater is largely ionic, and the relative pro-
portions of the different ions are almost constant.

An uncertainty level of 0.002 g kg−1 in dissolved mass frac-
tion (i.e. a relative uncertainty of 6   ×   10−5 for typical sea-
water with a dissolved mass fraction of about 35 g kg−1) is 
required for routine research and monitoring purposes (SUN 
1985, Seitz et al 2011). Significant efforts have been made 
to ensure consistency of salinity measurements to this level 
over the past century; unfortunately, no robust link has yet 
been established between any of the salinity definitions and 
the International System of Units (SI) despite the fact that 
Practical Salinity was recommended for oceanography in the 
context of SI units (SUN 1985, Siedler 1998).

As part of the development of TEOS-10, a first step was 
taken to move away from reliance on the electrical con-
ductivity of SSW as an artefact reference material used to 
define other seawater properties. Instead, the best available 
stoichiometric data for the composition of SSW was used to 
define a Reference Composition of seawater. The resulting 
salinity measure was termed Reference-Composition Salinity 
(Millero et al 2008). Although the new TEOS-10 Reference-
Composition Salinity Scale has many advantages, there still 
remain two fundamental problems with the current definition 
and measurement technology of seawater salinity: (i) a lack 

of traceability of salinity measurement results to the SI at the 
uncertainty required, and (ii) an incomplete knowledge of 
methods to handle small deviations in the chemical composi-
tion of the dissolved salts from the Reference Composition, 
which regionally occur in the oceans and marginal seas and 
may have relevant effects on seawater properties.

A proposed new concept that takes advantage of cur-
rently available density measurement technology and at the 
same time leaves established oceanographic practice largely 
unaffected is a combination of conductivity and SI-traceable 
density measurement (Seitz et al 2011). In this concept, the 
salinity of SSW samples can be additionally certified (or at 
least checked) by density measurements in combination with 
the TEOS-10 equation  of state. Implementing a degree of 
traceability to the SI will significantly improve the reliability 
of long-term comparisons of observational data, and this may 
be possible by making additional measurements of density.

A more thorough review of the climatological relevance 
of seawater salinity, its measurement history, current defini-
tion and practice, related problems and deficiencies as well 
as suggestions for overcoming them are given in the part 2 
companion paper (Pawlowicz et al 2015).

4. Seawater pH

Seawater pH is a critical parameter for characterizing many 
important processes in the ocean, and is in turn affected by 
these processes. In particular, the ocean carbon dioxide (CO2) 
system is central to a wide variety of biological processes 
in the ocean, with CO2 being taken up by photosynthetic 
organisms and remineralized by a variety of respiration pro-
cesses. Furthermore, a wide variety of calcifying organisms 
rely on their ability to form calcium carbonate (CaCO3) for 
shells or skeletons from the surrounding seawater (Bednaršek  
et al 2012, Smith et al 2012). All of these processes affect and 
are affected by seawater pH, which can exhibit pronounced 
diurnal and seasonal cycles as well as strong irregular fluc-
tuations related to local mixing and many other factors (Buch 
1945, Hofmann et al 2011, Doney 2013, Omstedt et al 2014).

Over the past two centuries, the release of CO2 from human 
industrial and agricultural practices has resulted in atmos-
pheric CO2 levels that are now higher than has been experi-
enced on the Earth for at least the last 800 000 years (Lüthi  
et al 2008). During this period, the oceans have taken up about 
30 % of the total amount of CO2 produced by human activities 
(Khatiwala et al 2013, IPCC 2013). This addition of anthropo-
genic CO2 to the ocean has reduced the surface ocean pH by 
about 0.13 to date and is expected to reduce pH by a further 
0.3 by the end of this century (Feely et al 2004).

The concept of pH was introduced by Sørensen (Sörensen 
1909) in terms of a logarithmic function of the hydrogen-ion 
concentration, [ ( ) ( )]cpH lg H / 1 mol L 1= − + − , later replaced by 
the reduced practical activity (as defined by equation (B.11) in 
appendix B in the supplement) (stacks.iop.org/MET/53/R1/
mmedia),

( )apH lg H ,= − + (1)

33 Certain commercial products are identified in this paper, but only in order 
to adequately specify the procedure. Such identification neither constitutes 
nor implies recommendation or endorsement by any of the organisations 
represented by the authors.

Metrologia 53 (2016) R1

http://stacks.iop.org/MET/53/R1/mmedia
http://stacks.iop.org/MET/53/R1/mmedia


Review

R6

to better account for ionic interactions in the solution (Sørensen 
and Linderstrøm-Lang 1924). In recent decades, because 
of the impossibility of measuring single-ion activitites and 
other, more technical issues, a variety of related but different 
operationally defined pH-like quantities have been introduced 
(IUPAC 1985). However, as Bates and Popovych (1981) noted 
more than 30 years ago, related problems of incompatibility 
are inevitable. Only for a few selected calibration procedures 
in media of low ionic strength can the traceability hierarchy 
between the conceptually defined values, equation  (1), and 
experimentally assessed pH values with inherent uncertainties 
be established successfully (Baucke 2002, Buck et al 2002).

These technical issues are particularly problematic in sea-
water studies. First, seawater has a high ionic strength, which 
causes problems when using conventional pH calibration 
standards. Second, some current research problems such as 
detection of the long-term anthropogenically driven changes 
in ocean carbon chemistry over multi-decadal timescales 
would benefit from an extremely small standard uncertainty 
in pH measurements such as 0.003 (Newton et al 2014), 
albeit over a fairly narrow range of pH, and this is far smaller 
than the differences between many of the available opera-
tionally defined ‘pH’ quantities (Marion et al 2011). The 
notation ‘pH’ in quotation marks is used to emphasize that, 
although commonly called pH, these various operationally 
defined quantities are not identical to the accepted definition, 
equation (1). It is the decision to define pH as the single-ion 
activity, equation  (1), which causes additional difficulties. 
Such a single-ion activity is immeasurable by any thermo-
dynamic method and requires a convention for its evaluation 
(Buck et al 2002).

As a result of critical assessments (Marion et al 2011) 
of the various concepts that have been adopted by different 
groups for pH of seawater, the following steps are suggested 
for improvement:

First, a suitable nomenclature is needed to keep pH ter-
minology less ambiguous and to make more transparent the 
alternative definitions and conventions. It is the task of inter-
national bodies such as IUPAC or IOC to develop and pro-
mote such conventions.

Second, it is recommended that ocean scientists be encour-
aged to use the same chemical quantity, namely the free con-
centration or activity of the hydrogen ion, to examine the 
effect of pH on processes in the oceans. pH can be estimated 
from measurement (potentiometric, spectrophotometric) and 
modelling approaches. Accuracy via different definitions 
and conventions clearly requires consistency with respect to 
experimental measurements, equilibrium constants, activity 
coefficients, and buffer solutions that are used for specific 
approaches.

A third suggestion is that standard formulas be devel-
oped for the accurate and unambiguous conversion between 
the different pH scales that are in practical use, and that 
their uncertainty budgets be developed. Similar to existing 
standard equations  for conductivity or density of seawater, 
future empirical correlation equations for the pH of Standard 
Seawater (or artificial seawater) as functions of salinity, tem-
perature, pressure, CO2 fugacity and other relevant involved 

parameters, consistent with the IAPWS formulation for the 
dissociation constant of pure water (Bandura and Lvov 2006, 
IAPWS 2007), should be envisaged as helpful tools to ensure 
international comparability of measurement results.

Fourth, the development of appropriate numerical models 
should be pursued to find a suitable convention for activity of 
the hydrogen ion in seawater or in other aqueous solutions. 
With the existence of such a convention, metrological trace-
ability to the SI can be developed.

Finally, as a related though separate issue, the development 
is needed of pH standard buffer solutions which can be used 
directly to calibrate pH electrodes in potentiometric pH meas-
urements and also in the experimental determination of Kp a 
values, ≡ − ( )K Kp lga a , where Ka is the equilibrium constant 
for the acid ionization of the indicator dyes for spectrophoto-
metric seawater pH measurements. This requires the develop-
ment of an artificial seawater and its characterization under 
different conditions.

A more thorough review of the climatological relevance of 
seawater pH, its oceanographic measurement history, current 
definition and practice, related problems and deficiencies as 
well as suggestions for overcoming them are given in the part 
3 companion paper (Dickson et al 2016).

5. Atmospheric relative humidity

The term humidity indicates water vapour, normally admixed 
with air or other dry gas. Above liquid water and aqueous 
solutions, above ice, and in pore spaces lined with adsorbed 
water, water vapour will be found, often with an interface-
crossing net flux of molecules. The irreversible net flux only 
ceases at equilibrium, at which point the chemical potential 
of water is the same in all coexisting phases. The chemical 
potential depends primarily on the temperature, but also on 
the curvature of the interface between gas and liquid, the sur-
face material, the gas mixture, the substances dissolved in 
the condensed phase and the total pressure. If at equilibrium 
the condensed phase—either pure liquid water or ice—has a 
planar interface with the vapour phase, the vapour (or more 
loosely, the humid gas) is said to be saturated and the system 
is said to be at saturation.

In general, the relative humidity of a humid gas is the ratio 
of some humidity quantity to the same quantity at saturation 
at the same temperature. In particular, the de facto standard 
definition, which has been authorized by the WMO since 1950 
(WMO 2008, chapter 4, annex 4.a, pp 1.4–27) and by many 
other organizations, chooses the optional humidity quantity 
to be the water-vapour mole fraction. Nevertheless, a variety 
of alternative definitions using different ratios continue to 
propagate in particular in climatological and meteorological 
textbooks or research articles (Katsaros 2001). The problems 
of definition of relative humidity relate in part to the resulting 
ambiguity and the lack of a fundamental basis that would 
support one definition over another. An equally serious and 
related problem is the inability of the WMO definition (and 
of most alternative definitions) to cover the full range over 
which other humidity quantities apply and relative-humidity 
sensors respond usefully.
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The state of a humid gas can be characterized by a wide 
variety of humidity quantities, including the mixing ratio, the 
specific humidity, the vapour mole fraction, the vapour pres-
sure, the water-vapour partial pressure and the water fugacity 
(for details of the definitions see Feistel et al 2015a, the digital 
supplement (stacks.iop.org/MET/53/R1/mmedia) of this paper 
and the part 4 companion paper, Lovell-Smith et al 2015). Of 
these quantities, it is only the water fugacity that is equal in each 
phase at equilibrium and it is only the relative fugacity that con-
stitutes the proper thermodynamic driving force to saturation.

In irreversible thermodynamics, fluxes of heat and matter 
result from Onsager forces which are combinations of gradients 
of temperature and chemical potentials (de Groot and Mazur 
1962, Falkenhagen et al 1971, Glansdorff and Prigogine 1971, 
Landau and Lifschitz 1974). In the climate system, the most 
relevant differences of chemical potentials are those of water 
between ocean, ice cover and humid air, at the boundary of 
and within the atmosphere. These differences can be exactly 
expressed in terms of the relative fugacity (see appendix C 
in the supplement stacks.iop.org/MET/53/R1/mmedia) of 
water vapour in the atmosphere, which is one of the options 
for defining relative humidity. To a reasonable approximation, 
the spatial distribution of the relative fugacity of water vapour 
can be described by that of the relative humidity in the WMO 
definition (Erikson 1965, Kraus 1972, Hansen and Takahashi 
1984, IOC et al 2010, Feistel et al 2010a, Feistel and Ebeling 
2011, Li and Chylek 2012, Li et al 2015). At the sea surface, 
the thermodynamic driving force for evaporation is the differ-
ence between the chemical potentials of water in the ocean 
and in the atmosphere (Kraus and Businger 1994, IOC et al 
2010). Thus, relative humidity immediately above the sea 
surface essentially controls the latent heat export from the 
ocean, which in turn constitutes the dominant energy source 
driving global weather and climate processes (Chahine 1992, 
Trenberth et al 2005, Schneider et al 2010, Pierce et al 2011, 
Josey et al 2013, Bony et al 2015, Schiermeier 2015).

TEOS-10 has demonstrated the possibility and value of 
a rigorous axiomatic foundation of the description of sea-
water–ice–air thermodynamic properties. Using the same 
approach, development of a consistent ‘axiomatic’ definition 
and nomenclature of humidity quantities, as derived from a 
small set of empirical fundamental equations, will help to pro-
vide clarity and consistency within the wider humidity com-
munity. One such axiomatic approach to humidity, which uses 
an enhanced subset of TEOS-10, is outlined in appendix D in 
the supplement (stacks.iop.org/MET/53/R1/mmedia).

A more thorough review of the climatological relevance 
of relative humidity, its measurement history, current defini-
tion and practice, related problems and deficiencies as well 
as suggestions for overcoming them are given in the part 4 
companion paper (Lovell-Smith et al 2015).

6. Discussion and conclusion

Long-term data records of meteorological and oceanographic 
observations covering several decades are fundamental for 
the detection and quantification of climatic changes and for 
the verification of numerical climate models developed for 

the prediction of future physical and chemical conditions 
in the atmosphere and in the ocean. For this purpose, it is 
indispensable that the measurement results collected over 
the years from locations all over the globe are mutually 
comparable and free of spurious trends and discontinuities. 
Metrological comparability of measurement results for quan-
tities of a given kind requires metrological traceability to the 
same reference (VIM 2012). It is demonstrated in detail in the 
articles of this review that salinity, pH and relative humidity 
only incompletely satisfy important conditions implied by 
comparability, namely

 • metrological traceability to shared primary standards 
possessing high temporal stability, preferably to the 
International System of Units (SI),

 • unambiguous and clearly specified definitions of the 
measured quantities,

 • consistency of empirical equations applied for the conver-
sion, combination or correction of different values involved 
in the measurement or comparison procedures, and

 • provision of realistic uncertainty estimates for each meas-
urement result and each derived quantity.

Seawater salinity, seawater pH and atmospheric relative 
humidity are key climatological observables whose long-term 
trends are known to be small but fundamental indicators for 
changes in the global hydrological cycle, in ocean–atmos-
phere interaction and in the terrestrial balances of energy and 
matter. With the Thermodynamic Equation of Seawater 2010  
(TEOS-10), a new axiomatic set of equations  has recently 
become available that consistently and comprehensively 
describes the thermodynamic properties of seawater, ice 
and humid air, as well as their mutual phase equilibria and 
composites such as sea ice or clouds. The development of 
TEOS-10 by the SCOR/IAPSO Working Group 127 in close 
cooperation with IAPWS has raised new awareness of various 
deficiencies in the definition and measurement practice of sea-
water salinity, seawater pH and atmospheric relative humidity 
regarding traceability to the SI or inconsistent, incomplete or 
ambiguous definitions or measurement techniques.

More than a century ago, Knudsen and Sørensen devel-
oped the first official international salinity scale along with 
the definition of standard seawater as a metrological primary 
reference material for oceanographic salinity measurements 
(Culkin and Smed 1979). At about the same time, Sørensen 
defined pH as a measure of acidity of solutions such as sea-
water (Sörensen 1909), and Lewis introduced fugacity as a 
real-gas substitute for the ideal-gas partial pressure of gaseous 
mixtures (Lewis 1900). Notwithstanding, partial pressure of 
water vapour has been the basis of international standards for 
relative humidity since 1950, and further alternative, incon-
sistent definitions are frequently used in textbooks, research 
papers or numerical models in climatology and meteorology. 
Seawater salinity and pH have been measured with respect to 
many different scales, however, none of them provided proper 
traceability to the SI.

The conclusion from this review is that new SI-based 
definitions need to be introduced or new methods must be 
established which uniquely link the quantities of interest to 
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SI-traceable measurement results. Such links may consist 
of equations  (or ‘conventions’), such as the TEOS-10 equa-
tion  for the density of standard seawater which permits the 
calculation of Absolute Salinity from measurements of tem-
perature, pressure and density, all of the latter traceable to the 
SI (Seitz et al 2011). A similar approach is possible for the 
relative fugacity making use of the TEOS-10 equation of state 
of humid air (Feistel 2012, Feistel et al 2015a, 2015b). The 
development of an equation for the activity of the hydrogen 
ion in seawater derived from Pitzer equations has also been 
suggested recently (Marion et al 2011).

The general metrological concept of separating the defini-
tion of a quantity from the set of instructions (‘mise en pra-
tique’, see BIPM 2006, or ‘operational definition’) that in 
practice allows its measurement at the lowest level of uncer-
tainty is also promising for the climatological key observa-
bles seawater salinity, pH and atmospheric relative humidity. 
For example, the options of defining salinity in terms of the 
solute mass fraction, pH in terms of the hydrogen-ion activity, 
and relative humidity in terms of the water-vapour fugacity 
are theoretically well-founded and consistent with traditional 
use. For practical measurements, alternative quantities may 
be more suitable surrogate measurands if they are traceable 
to the SI and linked to the quantity in question by a robust 
theoretical or empirical relation. In the cases considered in 
this series of papers, preferred surrogate properties that obey 
these conditions may be seawater density, optical attenuation 
of an indicator dye, and dew-point temperature, which may 
be measured and used to calculate salinity, pH and relative 
fugacity, respectively, rather than measuring or realizing these 
quantities directly. The target quantities are then calculated 
from those measurands by certain, explicitly specified empir-
ical equations (such as those of TEOS-10) that should consti-
tute an integral part of the particular measurement standard.

Following this approach, establishing traceability to SI of 
salinity, pH and relative-humidity measurement results may 
include (Feistel 2013, 2015, Hellmuth et al 2014)

 (i) the rigorous theoretical definition of those key quantities 
in terms of thermodynamic properties of seawater and 
humid air, such as composition variables or chemical 
potentials,

 (ii) the specification of one or several surrogate properties 
that strongly correlate with the respective original quan-
tity, that are traceable to the SI, and are conveniently 
measurable in practice to the requisite accuracy,

 (iii) the development and formal adoption of equations that 
relate the original quantities to their surrogates,

 (iv) the development and subsequent specification of 
best-practice procedures for measuring the surrogate 
properties, including the calibration rules that establish 
the links to SI units,

 (v) the estimate of uncertainties involved in steps (i) to (iv),
 (vi) the development of recommended conversion proce-

dures between legacy data and the new quantities, and
 (vii) the release of recommendations regarding steps (i) to 

(vi) on an international and interdisciplinary level in the 
form of published resolutions, guides or manuals.

First steps in these directions have been undertaken in the 
cooperation between BIPM and IAPWS under the umbrella of 
the Joint SCOR/IAPWS/IAPSO Committee on the Properties 
of Seawater, JCS (BIPM 2012, 2014).
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Appendix A: Chemical potentials and reference states 

 
Chemical potentials were defined by Gibbs (1873) for the thermodynamic description of equilibria of 
multi-component and/or heterogeneous systems, and are closely linked to activity coefficients and 
fugacities. The statement of Kittel (1971) that "a vague discomfort at the thought of the chemical 
potential is still characteristic of a physics education" and that "this intellectual gap is due to the 
obscurity of the writings of J. Willard Gibbs who discovered and understood the matter 100 years 
ago" is still true even more than four decades later. In this Appendix, emphasis is put on some 
freedom available in the definition of chemical potentials, an aspect that is often only marginally 
touched in textbooks, but which is relevant here for the question of whether a certain mathematical 
expression in terms of chemical potentials may represent a measurable quantity or not. 

The Gibbs energy, G, of a mixture of N substances with the composition X = (X1, .., XN) can be written 
in the form 
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Typically, the extensive variables Xi may be the mass, the particle number or the mole number of 
constituent i. Conjugate to the chosen Xi, the partial Gibbs energies, µi, are the chemical potentials,  
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For theoretical reasons, at constant temperature and pressure, the set of chemical potentials of any 
given mixture always fulfils the Gibbs-Duhem differential equation, 
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If X and X' are two alternative sets of composition variables describing the same mixture, their 
conjugate chemical potentials are converted into each other by the linear transformation, 
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While this transformation is used to convert between mass-based and mole-based chemical 
potentials, it is commonly not applied if mass fractions or mole fractions are introduced as 
composition variables. For example, if Xn = MW is the mass of water in seawater, and Xi = Mi are the 
masses of the solutes, i = 1, …, N − 1, the related mass-based chemical potential of water in seawater 
follows from (A.2) to be 
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where MGg /  is the specific Gibbs energy of seawater, 
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i MMS is the mass fraction of 

dissolved salt,  and 
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 is the mass of the sample.  
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Similarly, if XN = nW  is the number of moles of water vapour in a sample of humid air,  and Xi = ni  are 
the mole numbers of the dry-air constituents, i = 1, …, N − 1, the mole-based chemical potential of 
water in humid air is computed from (A.2) to give 
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W 1 ,        (A.6) 

where   nGg /m   is the molar Gibbs energy of humid air, x = nW / n the mole fraction of water 

vapour, and 



N

i

iXn
1

 is the number of moles contained in the sample. 

In addition to the dependence of chemical potentials on the choice of the concentration variables, 
they are also arbitrary with respect to a linear function of temperature. If µi is the chemical potential 
of a substance i, the modified function, 

     TBApTpT iiii  ,,,,' XX  ,       (A.7) 

constitutes an equivalent chemical potential of that substance whatever constant values we may 
choose for Ai and Bi, provided that mutually consistent values are chosen for the same substance in 
each phase or mixture in the given system. The two undefined constants represent the partial 
absolute energy and the partial absolute entropy of the substance, which cannot be measured 
experimentally. Consequently, individual chemical potentials cannot be measured either. 

A convenient way to fix those arbitrary constants is the formulation of reference-state conditions 
(Hamer and Wu, 1972). For water, in 1956 at the 5th ICPS1 it was decided to set the entropy and the 
internal energy of liquid water to zero at the liquid-solid-gas triple point (Wagner and Pruß, 2002). 
Consistency requires that the same choice must also be applied for ice, for water in seawater and for 
water vapour in humid air (Feistel et al., 2008). Similar reference-state conditions were specified in 
TEOS-10 for sea salt and for dry air (IOC et al., 2010), but not separately for each chemical 
constituent of those mixtures. Because the composition of dissolved air in water deviates from that 
of dry air in the gas phase and depends on temperature and pressure, the current TEOS-10 
specifications will be insufficient if the dissolution of air is no longer neglected. In general it is 
recommended that reference states be chosen at conditions where the correlation equations used 
are known with high accuracy, rather than at extreme states such as at zero absolute temperature. 

The mole-based chemical potential of a solute at infinite (ideal) dilution, id

i , takes the asymptotic 

form (Planck, 1888; Guggenheim, 1949; Falkenhagen et al., 1971; Prausnitz et al., 1999)  

    iii xRTpTpT ln,,, 0id   X ,        (A.8) 

where xi is the mole fraction of the solute, and the reference chemical potential 0

i is defined by the 

mathematical limit,  
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Note that the arbitrary constants in the definition of chemical potentials remain in the limit of infinite 

dilution, so that the difference    pTpT ii ,,,, id XX    is independent of the free constants in (A.7). 

 

                                                 
1 ICPS: International Conference on the Properties of Steam, held by a forerunner of IAPWS, www.iapws.org  

http://www.iapws.org/
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Appendix B: Definition of activity, activity coefficient and osmotic coefficient 

 
Activities, instead of composition variables, were introduced by Lewis (1907) for the empirical 
description of solutions whose behaviour deviates from ideality. 

The absolute activity, λi, of a substance i in a mixture is defined by (Guggenheim, 1949; Harrison, 
1965; Kittel, 1969) 
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 exp ,          (B.1) 

where µi is the mole-based chemical potential of the substance. As an example, in TEOS-10 (IOC et 
al., 2010) the activity of water in seawater is defined by eq. (B.1).  

For simplicity, a single solute is considered in the following. Because of the ambiguity (A.7) of the 
chemical potential, physically equivalent absolute activities, λi and λi’, may differ by an arbitrary 
factor of the form 
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Avoiding the ambiguity of the absolute activity, relative activities (or simply activities) can be defined 
by 
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where µi
0 is given by eq. (A.9), or by an alternative convention specifying some reference state that is 

assigned a relative activity of ai = 1. Writing eq. (B.3) in the form 

    iiii aRTpTpTx ln,,, 0
  ,        (B.4) 

comparison with eq. (A.8) shows that for a concentrated solution the activity, ai, formally takes over 
the role of the mole fraction, xi, of a dilute solution.  

Note that, up to a constant factor, the pH of a solution (see Part 3 of the companion articles) equals 

the excess chemical potential,    RTii /0
  , of the hydrogen ion (Himmel et al., 2010), 
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To quantify the deviation of the activity from the mole fraction, the activity coefficient, γi, is used in 
the form 

    pTxxpTxa iiiii ,,,,  ,        (B.6) 

with the limiting property 

   1,,lim
0




pTxii
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The activity coefficient (B.6) is sometimes termed “rational” in contrast to measured practical activity 

coefficients,  m

i , defined by (Lewis and Randall, 1921; Falkenhagen et al., 1971; Hamer and Wu, 

1972) 
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where mi is the molality of the solute. The molar activity,  m

ia , has the limiting property 
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Since the molar activity is not dimensionless, eq. (B.4) is replaced by 
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where om  is an arbitrary constant value, usually chosen as a standard-state molality of 
1o kgmol1 m (Covington et al., 1985). Writing eq. (B.10) more conveniently, a reduced practical 

activity “referenced to Henry’s law” is defined by (McGlashan, 1971; Buck et al., 2002; p. 59 in IUPAC, 
2007), 
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where  m

ia  is given by eq. (B.8) and 1o kgmol1 m . This reduced practical activity has the limiting 

property 
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Experimentally, activity coefficients of solutes may be determined from their effects on colligative 
properties of the solution, such as the related lowering of the vapour pressure or of the freezing 
point. Those properties are described by the difference between the chemical potential of the 
solvent (e.g., water) in the solution, µW(mi), and that of the pure solvent, µW(0), as a function of the 

solute molality, mi, expressed by means of the osmotic coefficient,  im , 

      iii mRTmm   0WW ,        (B.13) 

which was introduced by Bjerrum (1918). 

Making use of the definitions (B.10) and (B.13), the Gibbs-Duhem equation (A.3) relates the osmotic 
coefficient to the solute’s activity coefficient, γi

(m), by the Bjerrum differential equation (Bjerrum, 
1919; Lewis and Randall, 1961; Millero and Leung, 1976; Blandamer et al., 2005; Feistel and Marion, 
2007), 

      0lnd1d 
m

iii mm  .        (B.14) 

If  im  is determined experimentally, the solution of this equation provides   i
m

i m  only up to an 

arbitrary integration constant that may be normalised by the condition (B.9).  Note that eq. (B.14) is 

obeyed if  im  and 
  i
m

i m  are derived from a joint “activity potential”,     m

iim  ln1  , in 

the form (Feistel and Marion, 2007), 
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The function  im  may possess an arbitrary constant offset and is related to the excess Gibbs free 

energy of the solution per mass of solvent (Friedman, 1972; Hamer and Wu, 1972; Prausnitz et al., 

1999), RTmG iex . 

If the solute is a mixture itself, the Bjerrum relation (B.14) applies to the mean activity coefficient, 

    
i

m

ii

m m
m

 ln
1

ln ,         (B.16) 

where the sum is extended over all constituents of the solute,  imm  is the total molality, and 

im  and  m

i , respectively, are the molalities and the activity coefficients of the individual solutes. In 

such calculations, it is important to remember that for example the “total molality” of binary 
symmetric electrolytes is actually twice as large as the numerical value typically reported as the 
“molality” of the solution. This is because it is (another) convention to count only dissolved 
molecules rather than dissociated ions. 

In the case of electrolyte solutions, additional ambiguities are encountered. First, the molality of 
multi-component, multi-valent electrolyte solutions is ambiguous. The solution of 1 mole of NaCl 
contains 2 moles of dissociated solute, 1 mole of the cation Na+ plus 1 mole of the anion Cl-. Such a 
solution is usually described as 1-molal (1 mol / (kg solvent)), referring to the salt originally dissolved 
(analytical concentration) as well as to the concentration of each of the two ionic species found in 
the solution. However, if 2 moles of NaCl are dissolved together with 1 mole of MgSO4, that is, 3 total 
moles of “salt”, the final solution is in no way different from that obtained by dissolving 1 mole of 
Na2SO4 and 1 mole of MgCl2, that is, of 2 total moles of “salt”. Unless the definition (B.13) and the 
Bjerrum relation (B.14) are specifically modified to compensate for the particular molality 
convention, the ambiguity of m may result in many different related osmotic coefficients for the 
same mixture, and may in turn also affect the results obtained for the mean activity coefficients. 

Ambiguity in specifying the moles of solute in seawater with given salinity has led to very different 
molalities being reported in the literature (Feistel and Marion, 2007). In the TEOS-10 standard, the 
ambiguity of seawater molality is tentatively resolved by a convention based on the ions and 
molecules of the sea-salt Reference Composition. The related standard-ocean molality is m = 
1.1605813 mol kg–1 (Millero et al., 2008). 

A more critical problem in multi-component systems arises due to the electroneutrality of the 
solution. That is, when the solute consists of at least two ionic species (one cation and one anion), 
only their mean activity coefficient (B.16) can be determined from experiments. Problems in 
measuring single-ion activities are discussed by Bjerrum (1919) and Guggenheim (1949). Single-ion 
activities cannot unambiguously be inferred from mean chemical potentials of electrically neutral 
combinations of ions. To overcome this problem, as in particular required for the calculation of pH, 
eq. (B.5), auxiliary assumptions are sometimes applied, such as equating the activities of the cations 
and the anions of a particular solute, as suggested for KCl by Lewis and Randall (1923). Such arbitrary 
practical “conventions” may reasonably be applied as long as they do not conflict with experimental 
evidence. On the other hand, the Debye-Hückel limiting law predicts that the ion activity is a well-
defined function of the ionic strength of very dilute electrolytes. Theoretical relations of this kind 
between activities and other measurable quantities (such as concentrations), for example, equations 
for single-ion activities derived from Pitzer equations, are in conflict with the putative arbitrariness of 
those conventions. 

In contrast to empirical thermodynamics, single-ion activities are well-defined quantities in the 
theoretical framework of statistical thermodynamics (Falkenhagen and Ebeling, 1971; Ebeling and 
Scherwinski, 1983; Prausnitz et al., 1999), but related analytical expressions such as the Debye-
Hückel limiting laws are available only for dilute solutions. At higher concentrations, microscopic 
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details of ion-ion and ion-solvent interactions become relevant. However, these are not precisely 
known and can only approximately be accounted for mathematically (Ebeling and Scherwinski, 1983). 
One practical way out of this situation is the use of so-called Pitzer equations, i.e., by approximating 
single-ion activities as series expansions with respect to the ion concentrations and to adjust the 
unknown empirical coefficients to measured data, such as to chemical mass-action laws (Nesbitt, 
1980; Marion and Grant, 1994; Prausnitz et al., 1999; Marion and Kargel, 2008; Marion et al., 2011). 
Of the best currently known Pitzer equations of seawater ions, consistency is excellent with respect 
to colligative properties while other properties such as sound speed may not yet be represented 
within experimental uncertainty (Feistel and Marion, 2007; Feistel, 2008; Sharp et al., 2015). 
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Appendix C: Definition of fugacity and relative fugacity for water in humid air 

 
Fugacity, fV, the "escaping tendency" (Lewis, 1901a, b) of water vapour in a gaseous mixture, is 
defined as (Prausnitz et al., 1999; Zeebe and Wolf-Gladrow, 2005; IUPAC, 2006) 

   
 










RT

pTx
TfpTxf

,,
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,       (C.1) 

where x is the mole fraction of water vapour in the mixture, µV is its mole-based chemical potential, 
and R is the molar gas constant. The fugacity has dimensions of pressure, eq. (C.2), and may be 
thought of as an “effective partial pressure” which deviates from the partial pressure, xp, at states 
away from the ideal-gas limit; see eq. (C.8) below. Although fugacity is a concept valid for arbitrary 
substances, here for water vapour the subscript V is used in order to distinguish the symbol for 
fugacity from that of the water-vapour enhancement factor,  f.  Also, for simplicity of the equations, 
the mole fraction is used here as the composition variable, in contrast to the mass fraction chosen in 
Appendix D. The conversion between the two is given by entry #8 of the derived quantities in that 
Appendix. 

The reference fugacity in eq. (C.1),  Tf 0

V , is a function of the temperature alone and is chosen to be 
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where id

V  is the chemical potential in the ideal-gas limit, i.e., 
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Here, p0 is an arbitrary constant pressure value. By definition, fugacities take only non-negative 
values. In explicit terms, the chemical potential of ideal-gas water vapour can be written in the 
mathematical form (Feistel et al., 2010) 
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  ,      (C.4) 

where  Tcp

id  is the (pressure-independent) ideal-gas molar isobaric heat capacity of water vapour, 

and g0, T0, p0 are arbitrary constants, usually specified by reference-state conditions, see Appendix A. 
For example, in TEOS-10 the constants used for water vapour take the values (Feistel et al., 2010), g0 
= MW × 2 501 460.964 842 82 J kg–1, T0 = 273.16 K, p0 = 253 269 701 789.662 Pa, R = MW × 461.523 64 

J kg–1 K–1, where M W = 18.015 268 g mol–1 is the molar mass of water. The function  Tcp

id  is available 

from Cooper (1982) with an extension down to 50 K (IAPWS, 2012). 

Making use of eq. (C.4), eq. (C.2) leads to the expression 
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In eq. (C.1) the factor, λV,  
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is termed the (absolute) activity of water vapour in the mixture (Guggenheim, 1949, Kittel, 1969; see 
eq. (B.1)), and has the ideal-gas limit 
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Note that only differences of chemical potentials, rather than their absolute values, are physically 
relevant and measurable. Hence, while different activity definitions exist depending on additional 
conventions, fugacities are unambiguous. Up to moderate pressures, the fugacity of water in humid 
air can conveniently be calculated from a virial equation (Feistel et al., 2015; IAPWS, 2015) that is 
free of any arbitrary constants or reference states. 

The fugacity of a substance in a liquid or solid mixture is equal to the fugacity of that substance in a 
gaseous mixture which is in equilibrium with the given condensed phase (Guggenheim, 1949, §4.51). 
This approach is practically useful for substances such as ice for which the meaning of the zero-
pressure limit (C.3) is not obvious (Feistel and Wagner, 2007). 

The fugacity coefficient, V , is used to quantify the deviation of the fugacity from the partial 

pressure, in the form, 

    pTxxppTxf ,,,, VV  ;        (C.8) 

it equals id

VVV /   with the limiting property, 

   1,,lim V
0




pTx
p

 .         (C.9) 

The relative fugacity, f , of water vapour in a gaseous mixture is defined as the fugacity of water 

vapour divided by the saturation fugacity, sat

Vf , (IOC et al., 2010; Feistel et al., 2010; Feistel, 2012), 
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  .      (C.10) 

Here, xsat is the mole fraction of water vapour in the gas mixture when it is in equilibrium with a 
liquid or solid reference phase at the same T and p, and λV and fV are given in eqs. (C.6) and (C.1), 
respectively. Note that solutions such as seawater are not used as reference phases; humid air in 
equilibrium with seawater is considered as subsaturated. 

Since at saturation the chemical potential of water in humid air equals that in the condensed phase, 
liquid or ice Ih, the relative fugacity of humid air with respect to liquid water can be written in the 
form (Feistel et al., 2010, IOC et al., 2010; Feistel, 2012; see also Appendix D) 

  
   







 


RT

pTpTx
pTxf

,,1,,
exp,, WV 

       (C.11) 

where µV and µW , respectively, are the chemical potentials of water in humid air and of pure liquid 
water. Note that here, for formal consistency with the vapour-phase notation, the argument “1” of 
µW represents the mole fraction of water in the liquid mixture, in contrast to Appendix B where often 
the solute molality, m, is the preferred composition variable, as common in solution chemistry. 
Below the freezing point, the chemical potential of liquid water, µW, in eq. (C.11) may be substituted 
by the chemical potential of ice, µIh. It is important that in the form of eq. (C.11), the relative fugacity 
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does not require an explicit definition of a gaseous saturation state and can reasonably be extended 
to conditions under which no stable saturation state of liquid water or ice exists, such as in contact 
with stable solutions at temperatures below the pure-phase freezing point or above the pure-water 
boiling point. For example, the vapour pressure of a saturated lithium chloride solution at 25 °C is 
353 Pa (Acheson, 1965), which is much smaller than the saturation vapour pressure of 3172 Pa below 
which no stable liquid pure-water phase exists at this temperature. If the vapour over this solution is 
admixed with dry air, the relative fugacity, eq. (C.11), of water in this mixture takes continuous 
values of 11.1 %rh over the whole pressure range from 353 Pa total pressure to atmospheric 
pressure (Wylie, 1965), smoothly crossing over the formal threshold at 3172 Pa below which the 
conventional definition of relative humidity ceases to exist. When expressing relative humidity in 
percent, the unit symbol %rh is preferably used here and in the Part 4 companion paper. 

Finally, we express the relative fugacity of water in the gas phase in terms of the chemical potential 
of water in an aqueous solution that is in equilibrium with humid air. From (C.6) and (C.10) we get 
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 .    (C.12) 

Equilibrium between gas and liquid is characterised by equal chemical potentials of all species in both 
phases. This applies to water in equilibrium between the given humid-air sample and a solution with 
the solvent mole fraction xW, 
 

   pTxpTx ,,,, WWV   ,        (C.13) 

 
and similarly, by definition of saturation, to that between saturated gas and liquid pure water, 
 

    pTpTx ,,1,, W

sat

V   .        (C.14) 

 
So we get for the relative fugacity of water in the gas phase,  
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 ,    (C.15) 

 
where the pure solvent is chosen as the reference state for the activity of water, aW, eq. (B.3), in a 
solution with solute molality m, and for the relative fugacity, eq. (C.14). We see that, when water 
vapour or humid air is in equilibrium with an aqueous solution, the relative fugacity of water in the 
gas phase is equal to the (relative) activity of water in the liquid phase, independent of the presence 
or absence of air, and of the nature of the solute (Hamer and Wu, 1972, eq. (3.1) therein; Feistel et 
al., 2010, eq. (10.14) therein; IOC et al., 2010, eq. 3.40.11 therein). Equation (C.15) may be used to 
produce reference materials of certified relative fugacity (Wylie, 1965; Acheson, 1965; Hamer and 
Wu, 1972; Greenspan, 1977), by e.g. the isopiestic method (Robinson, 1954).  
 
Relative fugacity is used for the description of moist solids (Ott, 1943; Kollmann and Côté, 1984; 
Köfinger et al., 2009). The relative fugacity of water vapour in humid air with respect to liquid water 
or ice as the reference substances is usually also termed "relative humidity" (Wylie, 1965; Kraus, 
1972; Greenspan, 1977; Kraus and Businger, 1994; Li and Chylek, 2012). 
 

The fugacity coefficient  pTx ,,V , eq. (C.8), can also be used to express the enhancement factor f, a 

frequently used humid-air property that was introduced by Goff (1949), see Appendix D. If we write 
eq. (C.14) for pure water vapour and denote the saturation pressure by esat(T), we have 
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    sat

W

sat

V ,,1,,1 eTeT   .        (C.16) 

 
By subtracting this equation from (C.14), we obtain a general relation between the enhancement 
factor and the fugacity coefficient 
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Here,  pT ,  is the Poynting correction factor of liquid water (Prausnitz et al., 1999), 
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 , (C.18) 

 
where λW is the (absolute) activity of liquid water, eq. (B.1), and vW is its molar volume.  
 
Eq. (C.17) does not account for the dissolution of air in water; if xsat is specified with respect to air-
saturated water, eq. (C.17) for the enhancement factor must be replaced by 
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 ,      (C.19) 

 
where xW is the solvent mole fraction in ideal-solution approximation (Feistel et al., 2015). Here, xW 

describes the Raoult effect,  pT ,  the Poynting effect, and the ratio of the fugacity coefficients 

represents the gas-phase interaction effect on the enhancement factor. Eq. (C.19) implies that the 
fugacity at saturation can be expressed by the relation 
 

          pTeTexpTxpxpTxfpTf ,,,1,,,,, sat

V

sat

W

sat

V

satsat

V

sat

V   ,   (C.20) 

 
and can be evaluated without explicit knowledge of the value of xsat if xW is set to unity or, if p > 
esat(T), is estimated by Henry’s law using ideal-solution and ideal-gas approximations, 
 

   Tepx sat

W 1   .         (C.21) 

 
Here, β is the reciprocal Henry’s constant of dry air defined by Herrmann et al. (2009).  
 
Similarly to eq. (C.20), the relation between relative fugacity and solvent activity, eq. (C.15), may also 
require correction for dissolved air. For the practical evaluation of eq. (C.20), numerically convenient 
correlation equations are available for esat(T) of saturated water vapour with respect to liquid water 

and to ice Ih (IAPWS, 1992, 2011; Wagner and Pruß, 1993; Wagner et al., 2011) and for fV and V of 
humid air in the form of a virial approximation (Feistel et al., 2015; IAPWS, 2015). 
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Appendix D: Example of an axiomatic approach to the definition of humid-air properties 

 
An "axiomatic" approach to relative humidity and related quantities could be based upon 
consistently specified thermodynamic potentials, such as those provided in IAPWS documents for 
liquid water, ice and humid air. Given these three empirical formulations (plus a few additional 
quantities such as molar masses or fundamental constants), all thermodynamic properties of humid 
air such as chemical potentials, vapour pressures, dew-point temperatures or relative humidities can 
first be formally defined and subsequently evaluated within this context, as well as subsequently 
evaluated quantitatively in a consistent, complete and accurate way. 
 
First the basic set of quantities considered as known a priori or defined externally (the “axioms”) are 
stated.  This set is axiomatic in the sense that it is  
a) independent in that none of its elements can in part or in toto be derived from other elements of 
the set,  
b) consistent in that it is impossible to derive from the set alternative, different results for the same 
derived quantity, and  
c) complete in that all quantities defined in a second step can/must be mathematically rigorously 
specified exclusively in terms of the “axioms”. 
 
The axiomatic set of nine basic quantities suggested here is: 
 

1. Pressure p: absolute, total, in-situ pressure to which the actual sample of humid air, aqueous 
liquid phase or ice is exposed. 

2. Temperature T: absolute, in-situ temperature2 of the actual sample of humid air, liquid water 
or ice. T is assumed here to be given on ITS-90. 

3. Air mass fraction A: mass fraction of dry air in the actual sample of humid air. 

4. Gibbs function gAV(A, T, p): Specific Gibbs energy of humid air expressed in terms of the 
independent variables A, T, p. As a thermodynamic potential, gAV provides all thermodynamic 
properties of humid air from algebraic combinations of its partial derivatives. 

5. Gibbs function gW(T, p): Specific Gibbs energy of liquid water expressed in terms of the 
independent variables T, p. As a thermodynamic potential, gW provides all thermodynamic 
properties of liquid water from algebraic combinations of its partial derivatives. The freely 
adjustable parameters of gW must be specified consistently with those of gAV, see App. A. 

6. Gibbs function gIh(T, p): Specific Gibbs energy of ice Ih expressed in terms of the 
independent variables T, p. As a thermodynamic potential, gIh provides all thermodynamic 
properties of ice Ih from algebraic combinations of its partial derivatives. The freely 
adjustable parameters of gIh must be specified consistently with those of gAV, see App. A. 

7. Molar mass MW: The molar mass of water is MW = 0.018 015 268 kg mol–1 (IAPWS, 2001). If 
the isotopic composition of water vapour in humid air is different from that of VSMOW3, 
such as by fractionation in evaporation (Jasechko et al., 2013), the composition must be 
specified rather than a single value for the molar mass. 

8. Molar mass MA: The molar mass of dry air is MA = 0.028 965 46 kg mol–1 (Picard et al., 2008). 
If the chemical or isotopic composition of dry air in humid air may vary, such as by a changing 

                                                 
2 also known as “dry-bulb temperature” in meteorology (WMO, 2008)  
3 VSMOW: Vienna Standard Mean Ocean Water (IAPWS, 2001) 
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fraction of CO2 or by dissolution of air in water, the composition must be specified rather 
than a single value for the molar mass (Picard et al., 2008). 

9. Molar gas constant4 R: The CODATA 2010 value is R = 8.314 4621 J K–1 mol–1 (Mohr et al., 
2012). 
Note that in the successively adopted IAPWS formulations used for TEOS-10, several slightly 
different, now obsolete values for R are specified. In principle, the value of R is not 
independent of the former basic quantities and can be obtained from the ideal-gas equation 

of state in the form of the mathematical limit  














pTg

p
p

T

M
R

p
,,0lim AV

0

W

, but this result 

will not exactly provide the most recent CODATA value if the TEOS-10 formula for gAV is used. 
Therefore, the R value of 2010 is introduced here additionally as an independent “exact” 
constant, consistent with the former basic quantities only within reasonable uncertainty. 

Note that there are various alternative possibilities of defining the axiomatic set, such as by using the 
IAPWS-95 Helmholtz function for fluid water (as a function of temperature and density) rather than 
by separate Gibbs function for liquid water (here, as basic item (5)) and for water vapour (here, as 
derived item #1, below). The actual choice made is a matter of convenience and purpose. 
 
The list of quantities that can be derived from the quantities (1) - (9) still obeys consistency but is no 
longer subject to requirements of independence or completeness. The list is extendable as required 
and is potentially unlimited. Provided the set of basic (“primary”) quantities is complete in the sense 
described above, derived (“secondary”) properties do not introduce any new empirical coefficients or 
correlations; they inherit their equations exclusively from those of the basic quantities. 

 
1. Gibbs function gV(T, p): The Gibbs function of water vapour is available from the Gibbs 

function of humid air in the limit of vanishing dry air, gV(T, p) = gAV(0, T, p). As a 
thermodynamic potential, gV provides all thermodynamic properties of water vapour from 
algebraic combinations of its partial derivatives. 

2. Chemical potential of water vapour V :   pT ,V  is computed from the Gibbs function of 

water vapour by the relation VV g . 

3. Chemical potential of liquid water W :   pT ,W  is computed from the Gibbs function of 

liquid water by the relation WW g . 

4. Chemical potential of ice Ih Ih :   pT ,Ih  is computed from the Gibbs function of ice Ih by 

the relation IhIh g . 

5. Triple point solid-liquid-gas of water (Tt, pt): Temperature and pressure of the common 
triple point of water are defined by the equations 

     tt

V

tt

W

tt

Ih ,,, pTpTpT   . 

6. Specific gas constants RW, RA: From the basic quantities (7), (8) and (9), the specific gas 

constants W

W /MRR   of water and A

A /MRR   of dry air are specified for convenience. 

7. Mole fraction xA: Using the basic quantities (3), (7) and (8), the mole fraction of dry air in 
humid air is computed from  

                                                 
4 The CODATA 2010 value reported here has recently been updated to R = 8.314 4598 J K−1 mol−1, http://physics.nist.gov/cgi-

bin/cuu/Value?r  

http://physics.nist.gov/cgi-bin/cuu/Value?r
http://physics.nist.gov/cgi-bin/cuu/Value?r
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  AW

A

A
//1

/

MAMA

MA
x


 . 

8. Mole fraction x: Using the basic quantities (3), (7) and (8), the mole fraction of water vapour 
in humid air is computed from  

 
  AW

W

//1

/1

MAMA

MA
x




 . 

9. Specific gas constant of humid air RAV: The molar gas constant, divided by the mass of one 
mole of humid air, is a linear function of the mass fraction A of dry air, in the form 

      WA

WA

AAV 1/ RAARxMMxRAR   

10. Gibbs function gAV,id(A, T, p): Specific Gibbs energy of ideal-gas humid air expressed in terms 
of the independent variables A, T, p. As a thermodynamic potential, gAV, id provides all 
thermodynamic properties of ideal-gas humid air from algebraic combinations of its partial 
derivatives. gAV, id is the mathematical low-pressure limit of gAV, obtained from the basic 
quantity (4) and the derived quantity (9), in the form  

   











0

AV

AV

0
0

AV

idAV, ln,,limln,,
p

p
TRpTAg

p

p
TRpTAg

p
. 

Here, p0 is an arbitrary constant pressure, such as p0 = 1 Pa, and is used here only to make 
the argument of the logarithm dimensionless. 

11. Chemical potential of water vapour in humid air AV

W :   pTx ,,AV

W  is computed from the 

Gibbs function of humid air by the relation   pTA AgAgAgg ,

AVAVAVAVAV

W /  and from 

(8). 

12. Chemical potential of ideal-gas water vapour in humid air idAV,

W :   pTx ,,idAV,

W  is computed 

from the Gibbs function of ideal-gas humid air (10) by the relation 

  pTA AgAgAgg ,

idAV,idAV,idAV,idAV,idAV,

W /  and from (8). 

13. Freezing temperature of water Tfrz: Tfrz(p) is computed implicitly from the equation for the 

phase equilibrium between liquid water and ice,    pTpT ,, frz

Ih

frz

W   . 

14. Saturated vapour pressure of water esat: esat(T) is computed implicitly from the equation for 

the phase equilibrium between liquid water and water vapour,    satVsatW ,, eTeT   . 

15. Sublimation pressure of ice esubl: esubl(T) is computed implicitly from the equation for the 

phase equilibrium between ice Ih and water vapour,    sublVsublIh ,, eTeT   . 

16. Specific humidity q: Specific humidity, or the mass fraction of water vapour in humid air, is 
computed by q = 1 – A. 

17. Partial pressure of water vapour pV: The partial pressure of water vapour in humid air is 
defined as pV = x p. 

18. Dew-point temperature Td: The dew-point temperature Td(x, p) associated with the actual 
humid-air sample is defined as the temperature at which a sample with the same pressure 

and composition is in equilibrium with liquid water,    pTpTx ,,, d

W

d

AV

W   .   
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19. Frost-point temperature Tf: The frost-point temperature Tf(x, p) associated with the actual 
humid-air sample is defined as the temperature at which a sample with the same pressure 

and composition is in equilibrium with ice,    pTpTx ,,, f

Ih

f

AV

W   . 

20. Saturated water-vapour mole fraction xsat: The saturated water-vapour mole fraction 
xsat(T, p), with respect to liquid water or ice, is found by solving the equation for the phase 

equilibrium between humid air and liquid water,    pTpTx ,,, WsatAV

W   , or the equation 

for the phase equilibrium between humid air and ice Ih,    pTpTx ,,, IhsatAV

W   , 

respectively. 

21. (a) Enhancement factor of saturated humid air f: The enhancement factor f of saturated 
humid air with respect to liquid water or ice, if T and p are known, is found by calculating 

   TepxpTf satsat /,   or    TepxpTf sublsat /,  , respectively. Here xsat, esat and esubl are 

determined using items (20), (14) and (15), respectively. 

(b) Enhancement factor of saturated humid air f: The enhancement factor f of saturated 
humid air with respect to liquid water or ice, if xsat and T are known, is computed implicitly 
from the equation for the phase equilibrium between liquid water and humid air, 

   satsatsatAV

W

satsatW /,,/, xfeTxxfeT   , or the equation for the phase equilibrium between 

ice Ih and humid air,    satsublsatAV

W

satsublIh /,,/, xfeTxxfeT   , respectively. Here esat(T) and 

esubl(T) are determined using items (14) and (15), respectively. 

22. (a) Fugacity of water vapour in humid air fV: In the real gas, the role of the partial pressure 

pV is played by the fugacity  
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(b) Fugacity of pure water vapour fV: For the absence of dry air, the limit 1x  can readily 
be carried out for the fugacity of water vapour, as 
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23. Fugacity coefficient of water vapour in humid air 

V : The deviation of the fugacity from the 

partial pressure of water vapour, caused by non-ideal effects, is represented by the fugacity 

coefficient  
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24. Relative fugacity of humid air f : The relative fugacity of water vapour in humid air is 

defined as  
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  with respect to ice. 

25. Relative fugacity of water vapour f : In the limit of vanishing air, the relative fugacity of 

water vapour is  
   V W

W

, ,
1, , expf

T p T p
T p

R T

 


  
  

  

 with respect to liquid water, and 
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 with respect to ice. 
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26. Full-range relative humidity full: The relative humidity of moist air or water vapour is 

defined as  
 
 

 
   pTfTe

pxp

pTp

pxp
pTx

,

,

,

,
,,

sat

v

ref

v

v
full   where f(T, p) = 1 for esat(T) > p. 

In this list, if no arguments are reported explicitly, the actual (in-situ) arguments (x, T, p) are meant 
rather than those of any associated reference states etc. 

The numerical values of derived, "secondary" quantities can be used to calculate arbitrary data tables 
to which suitable "tertiary" functions may be fitted for more convenient use, with well-known ranges 
of validity and consistency. 
 
While it is metrologically mandatory that any value computed for one of the above quantities, be it 
basic or derived, has to be accompanied by an uncertainty estimate, there is not yet any systematic 
method for adding the requisite information to the basic “axiomatic” quantities, and for extracting 
the uncertainty of a desired quantity from that basic information. It has been argued that it is 
necessary and sufficient to add to the basic correlation equations a set of covariance coefficients 
(Saunders, 2003; Cox and Harris, 2006; Lovell-Smith, 2009; Feistel, 2011; Strutz, 2011) along with the 
set of empirical coefficients. Considering the experimental uncertainties related to the original 
background data from which the basic equations were constructed (typically by numerical 
regression) is no longer necessary as soon as the covariance coefficients have been determined. In 
the special case of small uncertainties, the generation and algebraic manipulation of covariance 
matrices is consistent with methods recommended by BIPM et al. (2008a, b) and GUM (2011). More 
thorough investigation of this approach is warranted. 
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List of symbols used in the supplement 

 

Symbol Quantity Remarks 

A dry-air mass fraction of humid air  

A arbitrary constant (with subscripts) App A, B 

Asat dry-air mass fraction of saturated humid air App D 

a relative activity (with subscripts)  

a reduced practical activity  
 ma  molar activity App B 

B arbitrary constant (with subscripts) App A, B 
id

pc  ideal-gas molar isobaric heat capacity App C 

esat water-vapour pressure at saturation Pure water 

esubl sublimation pressure of ice Ih App D 

f water-vapour enhancement factor App D 

fV fugacity of water in vapour phase  
0

Vf  reference fugacity App C 

sat

Vf  fugacity of water in vapour phase at saturation  

G Gibbs energy App A 

Gex excess Gibbs free energy App B 

g0 arbitrary constant molar energy App C 

gAV specific Gibbs energy of humid air App D 

gIh specific Gibbs energy of hexagonal ice I  

gV specific Gibbs energy of water vapour App D 

gW specific Gibbs energy of liquid water App D 

g(m) molar Gibbs energy App A 

M sample mass  App A 

MA molar mass of dry air 
App D 
MA = 0.028 965 46 kg mol–1 

Mi mass of solute molecules App A 

MW molar mass of water 
App A, D 
M W = 0.018 015 268 kg mol–1 

MW mass of water molecules in solution App A 

m solute molality (with subscripts)  

mo standard-state molality mo = 1 mol kg−1 

N number of substances  

n number of moles (with subscripts)  

p absolute pressure  

p0 arbitrary constant pressure App C, D 

pH pH value  

pt triple-point pressure App D 

pV water-vapour partial pressure App D 

q specific humidity  

R molar gas constant5 R = 8.314 4621 J K–1 mol–1 

RA specific gas constant of dry air RA = R / MA, App D 

RAV specific gas constant of humid air App D 

RW specific gas constant of water RW = R / MW 

S solute mass fraction App A 

                                                 
5 The CODATA 2010 value reported here has recently been updated to R = 8.314 4598 J K−1 mol−1, http://physics.nist.gov/cgi-

bin/cuu/Value?r  

http://physics.nist.gov/cgi-bin/cuu/Value?r
http://physics.nist.gov/cgi-bin/cuu/Value?r
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T absolute temperature, ITS-90  

T0 arbitrary constant temperature App C 

Td dew-point temperature App D 

Tf frost-point temperature App D 

Tfrz freezing temperature App D 

Tt triple-point temperature App D 

vW molar volume of liquid water App C 

X composition variable (with subscripts) App A 

x mole fraction of water vapour  

xA mole fraction of dry air App D 

xsat mole fraction at saturation   

xW mole fraction of liquid water App C 
  reciprocal Henry’s constant of dry air App C 

V  fugacity coefficient of water vapour  

  osmotic coefficient App B, C 

 molal activity coefficient (with subscripts)  
 m  practical activity coefficient App B 

λ absolute activity App B 

µ chemical potential (with super/subscripts)  

  Poynting correction factor of liquid water App C 

 activity potential App B 

 relative humidity (with super/subscripts)  

full  relative humidity in the extended range, esat > p App D 

 


